Unsupervised algorithm to classify immigration risk levels

Authors

DOI:

https://doi.org/10.56294/dm202398

Keywords:

unsupervised algorithm, migration quality, migration control, immigration inspectors, migration

Abstract

Introduction: Migration is a social phenomenon that affects the structure and distribution of the population, driven by the search for better opportunities and living conditions. In this regard, irregular migration poses a challenge for host countries, as it involves the entry of individuals without the appropriate documentation, potentially compromising national security and border control.
Objective: To evaluate the application of the unsupervised DBSCAN algorithm to classify foreigners based on the level of risk of irregular immigration at the National Migration Superintendence of Peru.
Methods: We use the DBSCAN algorithm on a dataset from the National Immigration Superintendence, classifying foreigners into clusters according to their level of risk of irregular immigration. In addition, we use the Silhouette, Davies-Bouldin, and Calinski-Harabasz coefficients to evaluate the quality of the classification.
Results: DBSCAN classified foreigners into four clusters based on the level of risk of irregular immigration: high, medium-high, medium-low, and low. The performance of the Silhouette index was 0.5338, the Davies-Bouldin index was 0.6213, and the Calinski-Harabasz index was 3680.2359.
Conclusions: We show that the use of DBSCAN in the National Immigration Superintendence effectively classified foreigners according to the level of risk of irregular immigration. This tool supports informed decisions of immigration inspectors, favoring Peruvian immigration regulation.

Metrics

Metrics Loading ...

References

Czaika M, Reinprecht C. Migration Drivers: Why Do People Migrate? Introd to Migr Stud. Springer, Cham; 2022. p. 49–82. https://doi.org/10.1007/978-3-030-92377-8_3.

Franco Gavonel M, Adger WN, Safra de Campos R, Boyd E, Carr ER, Fábos A, Fransen S, Jolivet D, Zickgraf C, Codjoe SN, Abu M, Siddiqui T. The migration-sustainability paradox: transformations in mobile worlds. Curr Opin Environ Sustain. 2021;49:98–109. https://doi.org/10.1016/j.cosust.2021.03.013.

Delbosc A, Shafi R. What do we know about immigrants’ travel behaviour? A systematic literature review and proposed conceptual framework. Transp Rev. 2023;43(5):914–934 https://doi.org/10.1080/01441647.2023.2179683.

Scholten P, Pisarevskaya A, Levy N. An Introduction to Migration Studies: The Rise and Coming of Age of a Research Field. Introd to Migr Stud. Springer, Cham; 2022. p. 3–24. https://doi.org/10.1007/978-3-030-92377-8_1.

IOM’s GMDAC. Poblaciones de migrantes internacionales. Estadísticas de La Inmigración y Emigración. 2021. https://www.migrationdataportal.org/es/themes/poblaciones-de-migrantes-internacionales.

Hajro A, Caprar D V., Zikic J, Stahl GK. Global migrants: Understanding the implications for international business and management. J World Bus. 2021;56(2):101192. https://doi.org/10.1016/j.jwb.2021.101192.

Armijos-Orellana AC, Maldonado-Matute JM, González-Calle MJ, Guerrero-Maxi PF. Los motivos de la migración. Una breve revisión bibliográfica. Universitas. 2022; 37:223–246. https://doi.org/10.17163/uni.n37.2022.09.

Lami B, Tarasenko I, Shyshova O, Voropayeva T, Verhun A. International Migration of Human Resources in the Conditions of Social Transformations. Economies. 2022;10(9):216. https://doi.org/10.3390/economies10090216.

Iranzo Á. Sub-Saharan migrants ‘in transit’: intersections between mobility and immobility and the production of (in)securities. Mobilities. 2021;16:739–757. https://doi.org/10.1080/17450101.2021.1935305.

Zeledon I, Unger JB, West AE, Cruz N, Schwartz SJ. Immigration and cultural stressors and their impact on mental health outcomes. Encycl Child Adolesc Heal. Elsevier; 2023. p. 698–710. https://doi.org/10.1016/B978-0-12-818872-9.00197-7.

Ajzenman N, Aksoy CG, Guriev S. Exposure to transit migration: Public attitudes and entrepreneurship. J Dev Econ. 2022;158:102899. https://doi.org/10.1016/j.jdeveco.2022.102899.

Cormoș VC. The Processes of Adaptation, Assimilation and Integration in the Country of Migration: A Psychosocial Perspective on Place Identity Changes. Sustainability. 2022;14(16):10296. https://doi.org/10.3390/su141610296.

INEI. Situación migratoria. Condiciones Vida la Población Venez que reside en Perú. Instituto Nacional de Estadística e Informática; 2018. p. 35–60. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1666/libro.pdf.

Kaeser A, Tani M. Do immigrants ever oppose immigration? Eur J Polit Econ. 2023;102460. https://doi.org/10.1016/j.ejpoleco.2023.102460.

Guerreiro J, Rebelo S, Teles P. What is the optimal immigration policy? Migration, jobs, and welfare. J Monet Econ. 2020;113:61–87. https://doi.org/10.1016/j.jmoneco.2020.04.009.

Bratu C, Dahlberg M, Engdahl M, Nikolka T. Spillover effects of stricter immigration policies. J Public Econ. 2020;190:104239. https://doi.org/10.1016/j.jpubeco.2020.104239.

Benavides Q, Doshi M, Valentín-Cortés M, Militzer M, Quiñones S, Kraut R, Rion R, Bryce R, Lopez WD, Fleming PJ. Immigration law enforcement, social support, and health for Latino immigrant families in Southeastern Michigan. Soc Sci Med. 2021;280:114027. https://doi.org/10.1016/j.socscimed.2021.114027.

Romero-Chuquital A, Melendres-Velasco JJ. Uso de data Warehouse para la toma de decisiones empresariales: una revisión literaria. Rev Cient Sist Inform. 2023;3(2):e543. https://doi.org/10.51252/rcsi.v3i2.543.

Guevara-Vega EMD, Delgado-Deza JR, Mendoza-de-los-Santos AC. Vulnerabilidades y amenazas en los activos de información. Rev Cient Sist Inform. 2023;3(1):e461. https://doi.org/10.51252/rcsi.v3i1.461.

Linares MD. La Dirección Nacional de Migraciones entre 2003 y 2015: acciones para el cambio de cultura organizacional. Na mirada “desde adentro.” REMHU Rev Interdiscip da Mobilidade Humana. 2018;26(53):187–203. https://doi.org/10.1590/1980-85852503880005312.

Santi S. La externalización de la “matriz de gestión migratoria” de la UE hacia América Latina y el Caribe. Estud Front. 2022;23: e109. https://doi.org/10.21670/ref.2225109.

Udayakumar R, Yogesh Pansambal S, Anbazhagan K, Sugumar R. Real-time Migration Risk Analysis Model for Improved Immigrant Development Using Psychological Factors. Migr Lett. 2023;20(4):33–42. https://migrationletters.com/index.php/ml/article/view/2979.

Ren C, Bloemraad I. New Methods and the Study of Vulnerable Groups: Using Machine Learning to Identify Immigrant-Oriented Nonprofit Organizations. Socius Sociol Res a Dyn World. 2022;8:237802312210769. https://doi.org/10.1177/23780231221076992.

Shao Y, Liu L, Gao H, Xu H, Wang Y, Gong S, Huang H. Clustering Algorithm Based on the Ground-Air Cooperative Architecture in Border Patrol Scenarios. Electronics. 2022;11(18):2876. https://doi.org/10.3390/electronics11182876.

Han S. An analysis of Koreans’ attitudes towards migrants by application of algorithmic approaches. Heliyon. 2022;8(8):e10087. https://doi.org/10.1016/j.heliyon.2022.e10087.

Molnar P. New technologies in migration: human rights impacts. Forced Migr Rev. 2019;61:7–9. https://www.fmreview.org/ethics/molnar.

Jin-Heng G, Jia-Xiang L, Zhen-Chang Z, Han-Yu L. CDBSCAN: Density clustering based on silhouette coefficient constraints. 2022 Int Conf Comput Eng Artif Intell. IEEE; 2022. p. 600–605. https://doi.org/10.1109/ICCEAI55464.2022.00128.

Anitha P, Patil MM. RFM model for customer purchase behavior using K-Means algorithm. J King Saud Univ - Comput Inf Sci. 2022;34:1785–1792. https://doi.org/10.1016/j.jksuci.2019.12.011.

Published

2023-11-17

How to Cite

1.
Valles-Coral M, Lazo-Bartra U, Pinedo L, Navarro-Cabrera JR, Salazar-Ramírez L, Ruiz-Saavedra F, Vidaurre-Rojas P, Ramirez S. Unsupervised algorithm to classify immigration risk levels. Data and Metadata [Internet]. 2023 Nov. 17 [cited 2023 Dec. 3];2:98. Available from: https://dm.saludcyt.ar/index.php/dm/article/view/98

Issue

Section

Original