Implementation of Naive Bayes classification algorithm for Twitter user sentiment analysis on ChatGPT using Python programming language
Peer-reviewed article
Submitted: 17-04-2023
Revised: 30-04-2023
Accepted: 06-06-2023
Published: 07-06-2023
Editor: Prof. Dr. Javier González Argote, https://orcid.org/0000-0003-0257-1176
DOI:
https://doi.org/10.56294/dm202345Keywords:
ChatGPT, Sentiment Analysis, Naive Bayes Classifier, programming language, algorithmAbstract
ChatGPT (Generative Pre-Trained Transformer) is a chatbot that is being widely used by the public. This technology is based on Artificial Intelligence and is capable of having conversational interactions with its users just like humans, but in the form of automated text. Because of this capability, online forums such as Brainly and the like can be overtaken by these smart chatbots. Therefore, this study was conducted to determine the positive and negative sentiments towards ChatGPT using Naive Bayes Classification algorithm on 5000 Twitter users. Data was collected by scraping technique and Python programming language was used in data analysis. The results showed that the majority of Twitter users had a positive sentiment of 57.6% towards ChatGPT, while the negative sentiment reached 42.4%. The resulting classification model had an accuracy of 80%, indicating a good classification model in determining sentiment probabilities. These findings provide a basis for the development of better AI chatbot technology that can meet user needs. The results of this study provide insights into user sentiment towards ChatGPT and can be used as a reference for future AI chatbot development.
Metrics
References
Annur Cindy Mutia. Jumlah Pengguna Internet Global Tembus 5,16 Miliar Orang pada Januari 2023 [Internet]. databooks. 2023. https://databoks.katadata.co.id/datapublish/2023/02/03/jumlah-pengguna-internet-global-tembus-516-miliar-orang-pada-januari-2023
Suud Hefty. Apa Itu Chat GPT? Ini Arti Kata, Keunggulan dan Cara Menggunankannya, Chatbot Viral di Media Sosial. TribunJatim.com. 2023. https://jatim.tribunnews.com/2023/02/04/apa-itu-chat-gpt-ini-arti-kata-keunggulan-dan-cara-menggunankannya-chatbot-viral-di-media-sosial
A. Erfina et al., "Indonesia’s Economic Recovery Post Covid-19 Pandemic Sentiment Analysis," 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia. 2022; pp. 1-4. https://doi.org/10.1109/ICCED56140.2022.10010695.
JustAnotherArchivist. A social networking service scraper in Python [Internet]. Github. 2018. https://github.com/JustAnotherArchivist/snscrape
Jain Deepak. Data Preprocessing in Data Mining [Internet]. https://www.geeksforgeeks.org/data-preprocessing-in-data-mining/
Sutami C. PERBANDINGAN METODE KLASIFIKASI NAIVE BAYES CLASSIFIER DAN LEXICON BASED DALAM ANALISIS SENTIMEN (Studi Kasus: Twitter). 2015;
Komputer JS, Buatan K, Ridwan A. Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. 2020.
Cross Validation: Teknik Evaluasi Machine Learning, 6 Metode [Internet]. Available from: https://digitalpolar.com/cross-validation/
Agrani A, Rikumahu B. PERBANDINGAN ANALISIS SENTIMEN TERHADAP DIGITAL PAYMENT “GO-PAY” DAN “OVO” DI MEDIA SOSIAL TWITTER MENGGUNAKAN ALGORITMA NAÏVE BAYES DAN WORD CLOUD COMPARISON OF SENTIMENT ANALYSIS AGAINST DIGITAL PAYMENT “GO-PAY” AND “OVO” IN SOCIAL MEDIA TWITTER USING NAÏVE BAYES ALGORITHM AND WORD CLOUD. Agustus. 2020;7(2):2534.
Resti J, Selva Jumeilah F. Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian. 2017;1.
Role of Data Cleaning in Sentiment Analysis [Internet]. https://www.repustate.com/blog/data-cleaning-in-sentiment-analysis/
Rizki Aditiya. #BelajarPython 9: Operasi “Tokenizing” pada Teks Berbahasa Indonesia - Aditya Rizki’s Note [Internet]. Blog. 2020. https://adityarizki.net/belajarpython-9-operasi-tokenizing-pada-teks-berbahasa-indonesia/
Baskoro Hayo. Supervised vs Unsupervised Learning: Apa Bedanya? [Internet]. 2022. https://pacmann.io/blog/supervised-dan-unsupervised-learning
Trivusi. Data Splitting: Pengertian, Metode, dan Kegunaannya - Trivusi [Internet]. 2022. https://www.trivusi.web.id/2022/08/data-splitting.html
Rahmayanti Setyaning Nastiti V, Basuki S. Klasifikasi Sinopsis Novel Menggunakan Metode Naïve Bayes Classifier. 2019;1(2):125–30.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Adhitia Erfina, Muhamad Rifki Nurul

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.