Data and Metadata Data & Metadata Editorial Salud, Ciencia y Tecnología en-US Data and Metadata 2953-4917 <p>The article is distributed under the <a href="" target="_blank" rel="noopener">Creative Commons Attribution 4.0 License</a>. Unless otherwise stated, associated published material is distributed under the same licence.</p> Digital Challenges: The Need to Improve the Use of Information Technologies in Teaching <p><span style="font-weight: 400;">In the post-pandemic scenario, a study was conducted at I.E. 50499 Justo Barrionuevo Álvarez in Cusco, Peru, to investigate the relationship between the use of information technologies and digital competencies among teachers. With a sample of 54 teachers, a structured questionnaire was administered to assess their competencies. The results revealed a direct positive correlation between the use of technologies and digital competencies, with a Spearman's Rho coefficient of 0.877, indicating a significant relationship. Correlations between the use of information technologies and the dimensions of digital competencies ranged from moderate to high. Significant correlations were observed in areas such as problem-solving (Rho=0.457), information and digital literacy (Rho=0.633), and security (Rho=0.743), among others. These findings suggest that, despite limited experience and limited knowledge of digital technologies among teachers in the institution, there is a notable relationship between the use of these technologies and their digital competencies. This study underscores the need for further training in information technologies for teachers in non-modernized urban contexts and for those who are older adults with limited prior experience in the digital domain. Enhancing digital competencies is crucial for adapting to the educational challenges in this new era of education</span></p> Lida Vásquez-Pajuelo Jhonny Richard Rodriguez-Barboza Karina Raquel Bartra-Rivero Edgar Antonio Quintanilla-Alarcón Wilfredo Vega-Jaime duardo Francisco Chavarri-Joo Copyright (c) 2024 Lida Vásquez-Pajuelo, Jhonny Richard Rodriguez-Barboza, Karina Raquel Bartra-Rivero, Edgar Antonio Quintanilla-Alarcón, Wilfredo Vega-Jaime, Eduardo Francisco Chavarri-Joo 2024-02-09 2024-02-09 3 216 216 10.56294/dm2024216 Data lake management using topic modeling techniques <p>With the rapid rise of information technology, the amount of unstructured data from the data lake is rapidly growing and has become a great challenge in analyzing, organizing and automatically classifying in order to derive the meaningful information for a data-driven business. The scientific document has unlabeled text, so it's difficult to properly link it to a topic model. However, crafting a topic perception for a heterogeneous dataset within the domain of big data lakes presents a complex issue. The manual classification of text documents requires significant financial and human resources. Yet, employing topic modeling techniques could streamline this process, enhancing our understanding of word meanings and potentially reducing the resource burden. This paper presents a comparative study on metadata-based classification of scientific documents dataset, applying the two well-known machine learning-based topic modelling approaches, Latent Dirichlet Analysis (LDA) and Latent Semantic Allocation (LSA). To assess the effectiveness of our proposals, we conducted a thorough examination primarily centred on crucial assessment metrics, including coherence scores, perplexity, and log-likelihood. This evaluation was carried out on a scientific publications corpus, according to information from the title, abstract, keywords, authors, affiliation, and other metadata aspects. Results of these experiments highlight the superior performance of LDA over LSA, evidenced by a remarkable coherence value of (0.884) in contrast to LSA's (0.768).</p> Mohamed CHERRADI Copyright (c) 2024 Mohamed CHERRADI 2024-04-15 2024-04-15 3 282 282 10.56294/dm2024282 Optimizing Energy Consumption in 5G HetNets: A Coordinated Approach for Multi-Level Picocell Sleep Mode with Q-Learning <p>Cell standby, particularly picocell sleep mode (SM), is a prominent strategy for reducing energy consumption in 5G networks. The emergence of multi-state sleep states necessitates new optimization approaches. This paper proposes a novel energy optimization strategy for 5G heterogeneous networks (HetNets) that leverages macrocell-picocell coordination and machine learning. The proposed strategy focuses on managing the four available picocell sleep states. The picocell manages the first three states using the Q-learning algorithm, an efficient reinforcement learning technique. The associated macrocell based on picocell energy efficiency controls the final, deeper sleep state. This hierarchical approach leverages localized and network-wide control strengths for optimal energy savings. By capitalizing on macrocell-picocell coordination and machine learning, this work presents a promising solution for achieving significant energy reduction in 5G HetNets while maintaining network performance.</p> Macoumba Fall Mohammed Fattah Mohammed Mahfoudi Younes Balboul Said Mazer Moulhime El Bekkali Ahmed D. Kora Copyright (c) 2024 Macoumba Fall, Mohammed Fattah, Mohammed Mahfoudi, Younes Balboul, Said Mazer, Moulhime El Bekkali, Ahmed D. Kora 2024-05-20 2024-05-20 3 333 333 10.56294/dm2024333 Technological disinformation: factors and causes of cybernaut identity theft in the digital world <p>The contribution of technology in the development of our daily activities has taken a giant step in the dependence of the citizen-technology-society with the integration of the Internet without glimpsing a border. It is therefore necessary to safeguard personal information if you have an active digital life. The identification of the factors and causes that lead to identity theft is a requirement for the technical and operational literacy of citizens, who are easy victims. This article aims to analyze some aspects of causes and factors of identity theft of citizens of the municipality of the center of the State of Tabasco. A quantitative instrument was designed, applied via Internet to a population of 3,158. The results show that citizens are unaware of several aspects of security in the environment of digital services, which, depending on gender, age and level of education, are captive in some scenario of digital insecurity.</p> Gilberto Murillo González Germán Martínez Prats Verónica Vázquez Vidal Copyright (c) 2023 Gilberto Murillo González, German Martínez Prats, Verónica Vázquez Vidal 2024-03-10 2024-03-10 3 133 133 10.56294/dm2023133 Big Data De-duplication using modified SHA algorithm in cloud servers for optimal capacity utilization and reduced transmission bandwidth <p>Data de-duplication in cloud storage is crucial for optimizing resource utilization and reducing transmission overhead. By eliminating redundant copies of data, it enhances storage efficiency, lowers costs, and minimizes network bandwidth requirements, thereby improving overall performance and scalability of cloud-based systems. The research investigates the critical intersection of data de-duplication (DD) and privacy concerns within cloud storage services. Distributed Data (DD), a widely employed technique in these services and aims to enhance capacity utilization and reduce transmission bandwidth. However, it poses challenges to information privacy, typically addressed through encoding mechanisms. One significant approach to mitigating this conflict is hierarchical approved de-duplication, which empowers cloud users to conduct privilege-based duplicate checks before data upload. This hierarchical structure allows cloud servers to profile users based on their privileges, enabling more nuanced control over data management. In this research, we introduce the SHA method for de-duplication within cloud servers, supplemented by a secure pre-processing assessment. The proposed method accommodates dynamic privilege modifications, providing flexibility and adaptability to evolving user needs and access levels. Extensive theoretical analysis and simulated investigations validate the efficacy and security of the proposed system. By leveraging the SHA algorithm and incorporating robust pre-processing techniques, our approach not only enhances efficiency in data de-duplication but also addresses crucial privacy concerns inherent in cloud storage environments. This research contributes to advancing the understanding and implementation of efficient and secure data management practices within cloud infrastructures, with implications for a wide range of applications and industries.</p> Rajendran Bhojan Manikandan Rajagopal Ramesh R Copyright (c) 2024 Rajendran Bhojan, Manikandan Rajagopal, Ramesh R 2024-03-30 2024-03-30 3 245 245 10.56294/dm2024245 Social media and education: perspectives on digital inclusion in the university setting <p>Social networks have become pivotal in education, offering opportunities for inclusive learning experiences. This study seeks to understand the role of social networks in educational inclusion by analyzing students' usage, motivations, and perceived benefits. It focuses on identifying usage patterns, main activities, and perceptions regarding the impact of social networks on communication, interpersonal relationships, and access to educational information. A quantitative approach was employed, gathering data through a questionnaire from 355 university students of the specialty of secondary education in Lima during the 2023-2 semester. Statistics on social media usage, predominant activities, and perceived benefits associated with their use were analyzed. Findings revealed high social media usage, with WhatsApp (96.9%) being the most used platform, followed by Facebook (63.4%) and Instagram (40.6%). Main activities were entertainment (67%), family communication (60.8%), and education (57.2%). Students also valued improved interpersonal relationships (31.5%) and access to information (69.9%). Social networks play a crucial role in educational inclusion, providing opportunities for communication, collaboration, and information access. The need to balance their use and address challenges like digital dependency, prioritizing student well-being in the digital age, is emphasized.</p> Milagros Maria Erazo-Moreno Gloria María Villa-Córdova Geraldine Amelia Avila-Sánchez Fabiola Kruscaya Quispe-Anccasi Segundo Sigifredo Pérez-Saavedra Jhonny Richard Rodriguez-Barboza Copyright (c) 2024 Milagros Maria Erazo-Moreno, Gloria María Villa-Córdova, Geraldine Amelia Avila-Sánchez, Fabiola Kruscaya Quispe-Anccasi, Segundo Sigifredo Pérez-Saavedra, Jhonny Richard Rodriguez-Barboza 2024-04-30 2024-04-30 3 299 299 10.56294/dm2024299 The effectiveness of education assistance programs using AI innovation. Case for tackling school dropout in Morocco <p>Introduction: since 2008, Morocco’s Tayssir program has been a key public initiative aimed at combating school dropout rates, by offering conditional cash transfers to households with school-aged children, particularly targeting rural communities with high poverty rates. This initiative seeks to ensure equitable access to education, regardless of socioeconomic status, and boosted school attendance rates.</p> <p>Objective: to assess the impact of the Tayssir program on reducing school dropout rates in rural Morocco and to examine the effectiveness of targeting strategies and incentives provided to families.</p> <p>Methods: the study utilized cross-sectional data from the Household Survey Panel Data. Propensity score matching (PSM) techniques were employed to estimate the program’s impact on school dropout rates, comparing beneficiaries with a control group not participating in the program. Various statistical analyses were conducted to explore the characteristics of participants and to validate the logistic model used.</p> <p>Results: the propensity score matching analysis revealed a statistically significant reduction in school dropout rates among beneficiaries of the Tayssir program. The average treatment effect on the treated (ATET) demonstrated a decrease in dropout rates by approximately 43 % using one-to-one matching, 42,7 % with k-nearest neighbor, and 38,6 % via kernel matching methods. Furthermore, no significant gender differences were observed in the program’s impact.</p> <p>Conclusions: the Tayssir program has significantly contributed to reducing school dropout rates in rural Morocco, ensuring better access to education for children from disadvantaged backgrounds. The program’s effectiveness underscores the importance of targeted interventions and conditional cash transfers in promoting educational attainment. Future recommendations include expanding the beneficiary base, refining targeting mechanisms, and establishing a unified social registry to improve program governance.</p> Mohamed Bouincha Joull Youness Mustapha Berrouyne Copyright (c) 2024 Mohamed Bouincha, joull youness, Mustapha Berrouyne 2024-04-13 2024-04-13 3 206 206 10.56294/dm2024206 Investigating the attitude of university students towards the use of ChatGPT as a learning resource <p>Introduction: currently, the integration of innovative technologies plays a crucial role in students' academic formation. In this context, ChatGPT emerges as a cutting-edge tool with the potential to transform the educational experience.<br />Objective: to assess the attitude of university students towards the use of ChatGPT as a learning resource.<br />Methods: a quantitative study, non-experimental design and observational and descriptive type. The sample was determined through simple random sampling and consisted of 269 university students of both genders who were administered the Attitudes towards the Use of ChatGPT Scale, an instrument with adequate metric properties.<br />Results: the attitude towards the use of ChatGPT as a learning resource was predominantly rated at a medium level, as were the affective, cognitive, and behavioral dimensions. This suggests that students enjoy using ChatGPT as a tool in their learning process and consider it facilitates and improves their educational experience. However, they expressed concern about the possibility of this tool generating inaccurate results.<br />Conclusions: the attitude of university students towards the use of ChatGPT as a learning resource was rated at a medium level. Likewise, it was determined that as students progressed in their academic training, they developed a more favorable attitude towards the use of ChatGPT.</p> Edwin Gustavo Estrada-Araoz Yolanda Paredes-Valverde Rosel Quispe-Herrera Néstor Antonio Gallegos-Ramos Freddy Abel Rivera-Mamani Alfonso Romaní-Claros Copyright (c) 2024 Edwin Gustavo Estrada-Araoz, Yolanda Paredes-Valverde, Rosel Quispe-Herrera, Néstor Antonio Gallegos-Ramos, Freddy Abel Rivera-Mamani, Alfonso Romaní-Claros 2024-04-24 2024-04-24 3 268 268 10.56294/dm2024268 Digital modernization and public management: A bibliometric review <p>Introduction: The article examines the issue of digital modernization in Latin America, where, despite over a decade of efforts, progress has been slow. It focuses on the importance of e-government for modern public administration, highlighting the limited digitization of activities.</p> <p>Objective: To evaluate the theoretical-conceptual development of the relationship between digital modernization and public administration.</p> <p>Methodology: The bibliometric technique was used, drawing from Scopus documents and employing a specific search protocol, resulting in 1,602 records with metadata.</p> <p>Results: There is shown growth in research since 2003, with studies primarily concentrated in the United States, the United Kingdom, and the Netherlands. Original articles in social sciences are highlighted, emphasizing the role of digital modernization in transparency and democratization of public administration.</p> <p>Conclusion: While there have been advancements in research since 2003, Latin American countries face significant challenges compared to other regions. The need for greater collaboration and research in this area in Latin America is emphasized to leverage the benefits of digital modernization. It is suggested to establish specific policies and strategies to drive governmental digitization and enhance the efficiency of public services, closing the existing gap.</p> Merly Enith Mego Torres Lindon Vela Meléndez Juan Diego Dávila Cisneros Roibert Pepito Mendoza Reyna Copyright (c) 2024 Merly Enith Mego Torres , Lindon Vela Meléndez, Juan Diego Dávila Cisneros, Roibert Pepito Mendoza Reyna 2024-05-17 2024-05-17 3 323 323 10.56294/dm2024323 Transformation and digital challenges in Peru during the COVID-19 pandemic, in the educational sector between 2020 and 2023: Systematic Review <p>Introduction: Digital transformation in the Peruvian educational sector has experienced a significant boost after facing the COVID-19 pandemic. During the period between 2020 and 2023, various innovative methods have been implemented to ensure the continuity of the academic year.<br />Objective: Explain how the digital transformation was carried out in the Peruvian educational sector after facing the COVID-19 pandemic to the present (2020 – 2023).<br />Method: Examples from many institutions, statistical studies and scientific and technological references were taken into account to achieve the objective. Throughout this work we are analyzing the different and innovative methods used by teachers to provide continuity to the academic year and how digital challenges were overcome.<br />Results: 78 documents from Scopus and Scielo were reviewed, leaving 62 after filtering. These cover 8 categories on the impact of the pandemic on education, the transition to online teaching, job skills, challenges and advantages of virtual education, innovation in higher education, educational evaluation in virtual environments, educational internationalization and challenges for teachers during the COVID-19 pandemic.<br />Conclusions: In conclusion, the digital transformation in the Peruvian educational sector after the COVID-19 pandemic has been fundamental to guarantee the continuity of the teaching-learning process.</p> Anali Alvarado-Acosta Jesús Fernández-Saavedra Brian Meneses-Claudio Copyright (c) 2024 Anali Alvarado-Acosta, Jesús Fernández-Saavedra, Brian Meneses-Claudio 2024-02-10 2024-02-10 3 232 232 10.56294/dm2024232 Vehicle license plate recognition system with artificial intelligence for the detection of alerted vehicles at the National University of Ucayali <p>Introduction: technological advances have led to the creation of artificial intelligence, implementing it in tasks until recently developed directly by man, as in the case of parking lot surveillance.<br />Objective: to learn about the application of a vehicle license plate recognition system with artificial intelligence for the detection of alerted vehicles at the National University of Ucayali during the period 2022-2023.<br />Methods: qualitative approach study, inductive method and descriptive research level; the population consisted of university personnel over 19 years of age, regardless of gender and whose employment status was by appointment or contract, among whom a non-probabilistic sampling was applied, established in thirteen people, to whom an interview composed of twelve items was applied and who filled out an informed consent form, guaranteeing confidentiality, to have reliable data and scientific integrity of the same.<br />Results: there are favorable and unfavorable opinions; the former are contributed by people who understand the process and agree with its implementation, while the latter respond to doubts generated by the lack of information and institutional communication.<br />Conclusions: it is necessary to improve the communication system to avoid misinterpretations, doubts, and confusions in the use of private data, giving the users of the campus the certainty that the advances, in cooperation with the competent authorities, result in an adequate progress for the organization and control of their assets.</p> Jackie Frank Chang Saldaña Lincoln Fritz Cachay Reyes Julio Cesar Pastor Segura Liz Sobeida Salirrosas Navarro Copyright (c) 2024 Jackie Frank Chang Saldaña, Lincoln Fritz Cachay Reyes, Julio Cesar Pastor Segura, Liz Sobeida Salirrosas Navarro 2024-04-27 2024-04-27 3 293 293 10.56294/dm2024293 Resource allocation on periotity based schuduling and improve the security using DSSHA-256 <p>Cloud computing has gained popularity with advancements in virtualization technology and the deployment of 5G. However, scheduling workload in a heterogeneous multi-cloud environment is a complicated process. Users of cloud services want to ensure that their data is secure and private, especially sensitive or proprietary information. Several research works have been proposed to solve the challenges associated with cloud computing. The proposed Adaptive Priority based scheduling (PBS) focuses on reducing data access completion time and computation expense for task scheduling in cloud computing. PBS assigns tasks depending on its size and selects the minimum cost path for data access. It contains a task register, scheduler, and task execution components for efficient task execution. The proposed system also executes a double signature mechanism for data privacy and security in data storage. This study correlates the perfo}rmance of three algorithms, PBS, (Task Requirement Degree) TRD and (recommended a Risk adaptive Access Control) RADAC, in terms of task execution time and makespan time. The experimental results demonstrate that PBS outperforms TRD and RADAC in both metrics, as the number of tasks increases. PBS has a minimum task execution time and a lower makespan time than the othertwo algorithms</p> <p> </p> K.Prathap Kumar R. Rohini Copyright (c) 2023 K.Prathap Kumar, R. Rohini 2024-02-08 2024-02-08 3 193 193 10.56294/dm2024193 Bibliometric analysis of the main applications of digital technologies to business management <p>In today's digital age, information technologies have revolutionized how companies manage their business operations and strategies. The application of these technologies in business management has demonstrated significant impacts in various sectors. The main objective was to analyze the scientific production related to the main applications of digital technologies to business management. The research paradigm was mixed through developing a bibliometric study and a thematic analysis of relevant sources. The SCOPUS database was used during the period 2000 – 2024. A total of 85 investigations were obtained. The behavior of investigations behaved heterogeneously while starting in 2019; it experienced notable growth with a maximum peak in 2023 of 24 investigations. The thematic analysis corroborated the importance of digital transformation for business management and the critical role played by the designed introduction of digital technologies. The findings allow us to affirm that it is a heterogeneous field, influenced by various disciplines and in the process of consolidation, due to the range of potentialities it offers.</p> Carlos Alberto Gómez-Cano Verenice Sánchez-Castillo Rolando Eslava-Zapata Copyright (c) 2024 Carlos Alberto Gómez-Cano, Verenice Sánchez-Castillo, Rolando Eslava-Zapata 2024-05-08 2024-05-08 3 10.56294/dm2024321 Automatic Mobile Learning System for the Constant Preparation of the Student Community <p>Introduction: the events that occurred with the pandemic caused a drastic change in all activities with direct contact due to the high risk of contagion, with educational centers being affected by the closure measures and the imposition of virtual classes to continue with student preparation, leading many students to see the need to have a computer to take their classes, eventually showing boredom due to the lack of desire to be in front of a computer, This to a certain extent weakens their interest in learning and affects their learning because mobile devices have become more important due to the various applications that provide students with information. For this reason, we propose mobile learning that allows students to have more information, as well as interaction with different students so that they have the opportunity to learn on a constant basis.</p> <p>Objective: the objective is to create an automatic mobile learning system for the constant preparation of the student community.</p> <p>Method: a methodology based on a client-server model to take advantage of the various educational resources accompanied by the good support it provides the subjects for students with the interaction of a mobile application.</p> <p>Results: through the operation of the system, it was visualized that the tests carried out with the students were presented with an efficiency of 96,70 %,</p> <p>Conclusions: this system presents a high efficiency that allows to reinforce the subjects that need more prominence in the student’s learning and progress of level through the teacher’s evaluations.</p> Lucía Asencios-Trujillo Djamila Gallegos-Espinoza Lida Asencios-Trujillo Livia Piñas-Rivera Carlos LaRosa-Longobardi Rosa Perez-Siguas Copyright (c) 2024 Lucía Asencios-Trujillo, Djamila Gallegos-Espinoza, Lida Asencios-Trujillo, Livia Piñas-Rivera, Carlos LaRosa-Longobardi, Rosa Perez-Siguas 2024-01-31 2024-01-31 3 221 221 10.56294/dm2024221 Exploring the Horizon: The Impact of AI Tools on Scientific Research <p>The rise of artificial intelligence (AI) and natural language processing (NLP) has revolutionized many aspects of daily life, particularly in the field of development of medical research articles. the use of AI in scientific writing has both advantages and disadvantages. As AI tools gain in popularity and their application becomes more ubiquitous, it's essential to consider how they may affect the future of medical literature. This work aims to describe a number of IT-based tools that contribute to scientific research and writing as ChatGPT, Gemini, Elicit, SCISPACE... Each tool has its own advantages and applications, not to mention shortcomings that can affect the quality of medical research. To conclude artificial intelligence tools have emerged as catalysts for innovation in healthcare research, providing motivation and driving progress even amidst challenges. Therefore, it's crucial to confront the obstacles related to AI and to tackle ethical and regulatory issues to enhance research quality and scientific output.</p> Hind Berrami Manar Jallal Zineb Serhier Mohammed Bennani Othmani Copyright (c) 2024 Hind Berrami, Manar Jallal, Zineb Serhier, Mohammed Bennani Othmani 2024-05-17 2024-05-17 3 289 289 10.56294/dm2024289 Datamart for the analysis of information in the sales process of the company WC HVAC Engineering <p>Introduction: Information has become a crucial asset for companies in decision making and performance evaluation. Information technologies, such as Business Intelligence, allow data to be converted into relevant information. The implementation of a Datamart, a specialized database, stands out as a solution to analyze specific data from a business area.<br />Objective: The main objective is to determine how the implementation of a Datamart affects data analysis in the sales area of the company.<br />Method: A bibliographic review of various sources was carried out using the PICO keywords. In addition, filters were applied to limit the search to relevant articles published in the last 5 years in Spanish or English. Then, 31 relevant documents that highlighted the implementation of Datamarts in the sales area were evaluated.<br />Results: Predominant Datamart development methods were identified, such as the Kimball and Hefesto methodologies. Likewise, effectiveness was measured through indicators such as processing time, report generation, user satisfaction and availability of information.<br />Conclusions: In conclusion, a well-implemented Datamart can be a key tool to improve data management and analysis in the sales area of a company.</p> Luz Castillo-Cordero Milagros Contreras-Chihuán Brian Meneses-Claudio Copyright (c) 2024 Luz Castillo-Cordero, Milagros Contreras-Chihuán, Brian Meneses-Claudio 2024-01-11 2024-01-11 3 184 184 10.56294/dm2024184 Validation and invariance of an Individual Work Performance Questionnaire (IWPQ-P) in Peruvian Nurses <p>Background: Performance evaluation is essential to ensure quality healthcare services, especially in the field of nursing. Objective: The objective of this study was to analyze the factorial structure, reliability, and invariance by sex and age of the work performance scale in Peruvian nurses. Methods: Confirmatory factor analysis (CFA) was conducted to evaluate the internal structure of the scale, and psychometric properties including reliability and convergent validity were determined. Additionally, factorial invariance was evaluated according to participants' sex and age. Results: The CFA supported the structure of three factors (Task Performance, Counterproductive Behaviors, Contextual Performance) and showed adequate and stable psychometric properties for a 12-item version (: χ2 = 231.09, df = 78; CFI = 0.97, TLI = 0.96, RMSEA = 0.06 (90% CI: 0.05-0.06), and SRMR = 0.03). Strict factorial invariance was demonstrated for both sex and age, and adequate internal consistency was found for each dimension, as well as convergent validity. Conclusions: The work performance scale, in its 12-item version (IWPQ-P), is a valid and reliable measure for evaluating work performance in Peruvian nurses. Its factorial invariance by sex and age makes it a useful tool for future research and practical applications in nursing performance evaluation.</p> Irma Chalco-Ccapa Gaby Torres-Mamani Mardel Morales-García Alcides A Flores-Saenz Liset Z. Sairitupa-Sanchez Maribel Paredes-Saavedra Wilter C. Morales-García Copyright (c) 2024 Irma Chalco-Ccapa, Gaby Torres-Mamani, Mardel Morales-García, Alcides A Flores-Saenz, Liset Z. Sairitupa-Sanchez, Maribel Paredes-Saavedra, Wilter C. Morales-García 2024-03-13 2024-03-13 3 259 259 10.56294/dm2024259 Scientific production of thesis juries at a Peruvian public university: A bibliometric study <p>Introduction: Thesis juries are a group of academics or experts whose purpose is to ensure the integrity and rigor in the processes of evaluation and academic defense of theses, as well as to provide critical and constructive feedback aimed at improving their quality.<br />Objective: To evaluate the scientific production in the Scopus, Web of Science, and Scielo databases of the thesis juries of the Faculty of Education of a public university in Peru.<br />Methods: Bibliometric, retrospective, and descriptive research that included 69 teachers who served as thesis juries during the period 2020-2023. The scientific production of the thesis committees was identified through the search of their publications registered in the Scopus, Web of Science, and Scielo databases.<br />Results: 56.5% of the teachers who served as thesis juries had no scientific production registered in the Scopus, Web of Science, or Scielo databases, while 43.5% did have some scientific production in these databases. Additionally, it was found that the scientific production of the teachers was mainly based on original articles, published in Spanish, and self-financed.<br />Conclusions: The scientific production in the Scopus, Web of Science, and Scielo databases of the thesis juries of the Faculty of Education of a public university in Peru was low. Therefore, it is imperative to implement policies aimed at strengthening their research and writing skills.</p> Edwin Gustavo Estrada-Araoz Guido Raúl Larico-Uchamaco José Octavio Ruiz-Tejada Jair Emerson Ferreyros-Yucra Alex Camilo Velasquez-Bernal Cesar Elias Roque-Guizada María Isabel Huamaní-Pérez Yasser Malaga-Yllpa Copyright (c) 2024 Edwin Gustavo Estrada-Araoz, Guido Raúl Larico-Uchamaco, José Octavio Ruiz-Tejada, Jair Emerson Ferreyros-Yucra, Alex Camilo Velasquez-Bernal, Cesar Elias Roque-Guizada, María Isabel Huamaní-Pérez, Yasser Malaga-Yllpa 2024-05-09 2024-05-09 3 304 304 10.56294/dm2024304 A dragonfly algorithm for solving the Fixed Charge Transportation Problem FCTP <p>The primary focus of this article is dedicated to a thorough investigation of the Fixed Load Transportation Problem (FCTP) and the proposition of an exceedingly efficient resolution method, with a specific emphasis on the achievement of optimal transportation plans within practical time constraints. The FCTP, recognized for its intricate nature, falls into the NP-complete category, notorious for its exponential growth in solution time as the problem's size escalates. Within the realm of combinatorial optimization, metaheuristic techniques like the Dragonfly algorithm and genetic algorithms have garnered substantial acclaim due to their remarkable capacity to deliver high-quality solutions to the challenging FCTP. These techniques demonstrate substantial potential in accelerating the resolution of this formidable problem. The central goal revolves around the exploration of groundbreaking solutions for the Fixed Load Transportation Problem, all while concurrently minimizing the time investment required to attain these optimal solutions. This undertaking necessitates the adept utilization of the Dragonfly algorithm, an algorithm inspired by natural processes, known for its adaptability and robustness in solving complex problems. The FCTP, functioning as an optimization problem, grapples with the multifaceted task of formulating distribution plans for products originating from multiple sources and destined for various endpoints. The overarching aspiration is to minimize overall transportation costs, a challenge that mandates meticulous considerations, including product availability at source locations and demand projections at destination points. The proposed methodology introduces an innovative approach tailored explicitly for addressing the Fixed Charge Transport Problem (FCTP) by harnessing the inherent capabilities of the Dragonfly algorithm. This adaptation of the algorithm's underlying processes is precisely engineered to handle large-scale FCTP instances, with the ultimate objective of unveiling solutions that have hitherto remained elusive. The numerical results stemming from our rigorous experiments unequivocally underscore the remarkable prowess of the Dragonfly algorithm in discovering novel and exceptionally efficient solutions. This demonstration unequivocally reaffirms its effectiveness in overcoming the inherent challenges posed by substantial FCTP instances. In summary, the research represents a significant leap forward in the domain of FCTP solution methodologies by seamlessly integrating the formidable capabilities of the Dragonfly algorithm into the problem-solving process. The insights and solutions presented in this article hold immense promise for significantly enhancing the efficiency and effectiveness of FCTP resolution, ultimately benefiting a broad spectrum of industries and logistics systems, and promising advancements in the optimization of transportation processes.</p> Ismail Ezzerrifi Amrani Ahmed Lahjouji El Idrissi Abdelkhalek BAHRI Ahmad El ALLAOUI Copyright (c) 2024 Ismail Ezzerrifi Amrani, Ahmed Lahjouji El Idrissi, Abdelkhalek BAHRI, Ahmad El ALLAOUI 2024-02-08 2024-02-08 3 218 218 10.56294/dm2024218 Assessment of the level of knowledge on artificial intelligence in a sample of university professors: A descriptive study <p>Introduction: The knowledge of artificial intelligence (AI) by university professors provides them with the ability to effectively integrate these innovative technological tools, resulting in a significant improvement in the quality of the teaching and learning process.<br />Objective: To assess the level of knowledge about AI in a sample of Peruvian university professors.<br />Methods: Quantitative study, non-experimental design and descriptive cross-sectional type. The sample consisted of 55 university professors of both sexes who were administered a questionnaire to assess their level of knowledge about AI, which had adequate metric properties.<br />Results: The level of knowledge about AI was low for 41.8% of professors, regular for 40%, and high for 18.2%. This indicates that there is a significant gap in the knowledge of university professors about AI and its application in education, which could limit their ability to fully leverage AI tools and applications in the educational environment and could affect the quality and effectiveness of teaching. Likewise, it was determined that age and self-perception of digital competencies of professors were significantly associated with their level of knowledge about AI (p&lt;0.05).<br />Conclusions: Peruvian university professors are characterized by presenting a low level of knowledge about AI. Therefore, it is recommended to implement training and professional development programs focused on artificial intelligence, in order to update and improve their skills in this field.</p> Edwin Gustavo Estrada-Araoz Yesenia Veronica Manrique-Jaramillo Víctor Hugo Díaz-Pereira Jenny Marleny Rucoba-Frisancho Yolanda Paredes-Valverde Rosel Quispe-Herrera Darwin Rosell Quispe-Paredes Copyright (c) 2024 Edwin Gustavo Estrada-Araoz, Yesenia Veronica Manrique-Jaramillo, Víctor Hugo Díaz-Pereira, Jenny Marleny Rucoba-Frisancho, Yolanda Paredes-Valverde, Rosel Quispe-Herrera, Darwin Rosell Quispe-Paredes 2024-04-24 2024-04-24 3 285 285 10.56294/dm2024285 Fuzzy Decision-Making Model for the inventory leveling under uncertainty condition <p>&nbsp;&nbsp;&nbsp; The option to create inventory is not always the optimal choice due to the associated expenses and space requirements. Nevertheless, there are instances where a shortage of materials on customer lines can result in substantial financial penalties. This constant contradiction places supply chain managers in a perplexing predicament, especially when considering the amplification of inventory through the bullwhip effect as it moves across different stages. Moreover, the uncertain backdrop created by unforeseen events intensifies this already critical situation, compelling managers to seek novel decision-making approaches. These approaches should enable the simulation of risks and the selection of suitable scenarios, particularly within the intricate domain of stochastic and dynamically evolving supply chains. In this study, we introduce a new decision-making model rooted in the fuzzy logic concept introduced by Loutfi Zadeh in 1965. This model is applied to criteria assessed by experts, representing the most pertinent parameters for guiding inventory optimization. The chosen criteria encompass Lead Time, Equipment Production Reliability, and Warehousing Costs. This model exhibits the potential to unearth intricate patterns and associations among variables that conventional statistical methods struggle to reveal. Notably, the integration of fuzzy logic for inventory prediction yields promising outcomes, extendable to the realm of artificial intelligence, where comprehensive inference rules facilitate effective decision-making.</p> <p>&nbsp;</p> Hatim Lakhouil Aziz Soulhi Copyright (c) 2024 Hatim Lakhouil, Aziz Soulhi 2024-01-11 2024-01-11 3 142 142 10.56294/dm2024142 Analysis of scientific information from a bibliometric approach between Chat GPT and Scopus: A comparative study <p>One of the main challenges faced by teachers, researchers, and students today is efficiently filtering reliable and useful information available on the internet, as well as in scientific academic databases. To address this phenomenon, the bibliometrics tool is used, which involves understanding the number of publications, analyzing them, and determining their trend based on the application of filters and relationships of scientific concepts in specialized topics. There are other technological tools that allow finding bibliographic information on the internet, such as artificial intelligence (AI) specifically through the ChatGPT chatbot (Generative Pre-trained transformer). The objective of this article is to identify the differences between the results of a bibliometric analysis from Scopus and ChatGPT; the research type is documentary; the search strategy for the bibliometric analysis was "Dynamic Capabilities." Findings show that there are differences between the data obtained from the two bibliometric analyses, including authors, subject areas, affiliations, and keywords; it should be noted that the use of ChatGPT is a basic and simple tool that complements the bibliometric analysis provided by an academic database like Scopus; it is suggested to compare the results analytically and manually at all times, which is of interest to academia and the development of theoretical frameworks in research work.</p> Ana karen Romero Deyanira Bernal Reyna Christian Sanchez Copyright (c) 2024 Ana Karen Romero, Deyanira Bernal, Reyna Christian Sánchez 2024-05-05 2024-05-05 3 252 252 10.56294/dm2024252 Assessment of the scientific production of a public university in southern Peru: A bibliometric study <p>Introduction: The scientific production of universities plays a crucial role in the generation and dissemination of knowledge, as well as in strengthening the position of academic institutions on both national and international levels.<br />Objective: To evaluate the scientific production in the Scopus database of a public university in southern Peru.<br />Methods: A bibliometric and retrospective investigation was conducted. Documents indexed in the Scopus database were analyzed by evaluating the quantity of documents, authors, journals where the documents were published, types of documents, language of publication, funding, areas of knowledge to which the documents belong, and co-authorship networks.<br />Results: A total of 763 indexed documents were identified in the Scopus database, showing a trend towards increased production in recent years. The majority of indexed documents were characterized by being original articles, published in foreign journals and in English language, and self-financed. Additionally, it was observed that more documents were published in the areas of Social Sciences and Agricultural and Biological Sciences.<br />Conclusions: In recent years, significant growth has been observed in the scientific production in the Scopus database of a public university in southern Peru. Therefore, it is imperative to promote an institutional research culture, focused on the development of research skills, with the purpose of increasing both the quantity and quality of publications.</p> <p> </p> Duverly Joao Incacutipa-Limachi Edwin Gustavo Estrada-Araoz Yony Abelardo Quispe-Mamani Euclides Ticona-Chayña Adderly Mamani-Flores Copyright (c) 2024 Duverly Joao Incacutipa-Limachi, Edwin Gustavo Estrada-Araoz, Yony Abelardo Quispe-Mamani, Euclides Ticona-Chayña, Adderly Mamani-Flores 2024-05-07 2024-05-07 3 301 301 10.56294/dm2024301 Economic Growth Unleashed: The Power of Institutional Quality <p>This paper examines the relationship between economic growth and institutional quality in the context of the Moroccan economy. Using annual data from 1970 to 2020 and an Autoregressive Distributed Lag (ARDL) cointegration approach, we analyze the long-run and short-run nexus between these two variables. The statistical tests performed, including the ADF and Phillips Perron tests, indicate integration at different orders, and the bounds cointegration test proposed by Pesaran was also conducted. The study finds that institutional quality has a positive short-term impact on economic growth. Furthermore, in the long term, the study reveals that institutional quality continues to positively influence economic growth in Morocco (P-value=0.01&lt;5%). These results contribute valuable insights to the existing empirical literature and can guide policymakers and stakeholders in implementing institutional reforms to promote economic development.</p> El Houssaine fathi Ahlam qafas Youness Jouilil Copyright (c) 2024 El Houssaine fathi, Ahlam qafas, Youness Jouilil 2024-04-24 2024-04-24 3 208 208 10.56294/dm2024208 Intelligent Optimization Framework for Future Communication Networks using Machine Learning <p>Confronting the undeniably complicated versatile correspondence organization, knowledge is the advancement heading of organization versatile improvement innovation later on. Portable correspondence information is a significant part representing things to come data society. AI calculation is embraced in the versatile improvement plot, which can facilitate different enhancement goals as per the progressions of climate and state and understand the ideal boundary arrangement. Canny portable terminal hardware is turning out to be increasingly well known. The combination and advancement of social, portable and area administrations make the conventional informal organization easily change to versatile correspondence organization. AI is a part of man-made consciousness. Its examination objective is to construct a framework which can advance a few guidelines from information and apply them to the resulting information handling. In light of chart hypothesis, this paper tackles the issue of correspondence network information really, and concentrates on the calculation of huge information examination in view of AI.</p> Vijaya Saradhi Thommandru T. Suma A. Mary Odilya Teena A. Muthukrishnan P Thamaraikannan S. Manikandan Copyright (c) 2024 Vijaya Saradhi Thommandru, T. Suma, A. Mary Odilya Teena, A. Muthukrishnan, P Thamaraikannan, S. Manikandan 2024-04-29 2024-04-29 3 277 277 10.56294/dm2024277 TextRefine: A Novel approach to improve the accuracy of LLM Models <p>Natural Language Processing (NLP) is an interdisciplinary field that investigates the fascinating world of human language with the goal of creating computational models and algorithms that can comprehend, produce, and analyze natural language in a way that is similar to humans. LLMs still encounter issues with loud and unpolished input material despite their outstanding performance in natural language processing tasks. TextRefine offers a thorough pretreatment pipeline that refines and cleans the text data before using it in LLMs to overcome this problem . The pipeline includes a number of actions, such as removing social tags, normalizing whitespace, changing all lowercase letters to uppercase, removing stopwords, fixing Unicode issues, contraction unpacking, removing punctuation and accents, and text cleanup. These procedures work together to strengthen the integrity and quality of the input data, which will ultimately improve the efficiency and precision of LLMs. Extensive testing and comparisons with standard techniques show TextRefine's effectiveness with 99% of the accuracy.</p> Ekta Dalal Parvinder Singh Copyright (c) 2024 Ekta Dalal, Parvinder Singh 2024-05-20 2024-05-20 3 331 331 10.56294/dm2024331 A Study of Factors Influencing Happiness in Korea: Topic Modelling and Neural Network Analysis <p>The aim of this study is to derive the important factors that influence levels of happiness in Korea, and to identify which factors are particularly important among these influencing factors. To achieve this goal, topic modelling analysis, machine learning analysis and neural network analysis methods were utilized. The Netminer 4.5 program was used for topic modelling analysis and machine learning analysis, and SPSS MODELER 18 was used to perform neural network analysis. Two types of analysis data were used in this study. The first consisted of 1,000 papers relating to happiness published in academic journals managed by the Springer publishing company, which were used to derive happiness-influencing factors. The second consisted of a survey conducted in 2020 by the Community Well-being Center of the Graduate School of Public Administration at Seoul National University in Korea. A total of 16,655 people responded to this survey. The analysis results of the study are as follows. Important variables that affect the level of happiness of Korean residents are: family life, social status, income, health, and perceptions of inequality. Analysis using neural network analysis of the most important factors influencing happiness showed that satisfaction with family life had the most important influence. This suggests that policies that can improve the quality of family life, such as family-friendly work environments, childcare support, and domestic violence prevention and response programmes, will become important in the future.</p> Ji-Hyun Jang Nemoto Masatsuku Copyright (c) 2024 A 2024-03-14 2024-03-14 3 238 238 10.56294/dm2024238 Real-Time Vehicle Detection for Traffic Monitoring: A Deep Learning Approach <p>Vehicle detection is an essential technology for intelligent transportation systems and autonomous vehicles. Reliable real-time detection allows for traffic monitoring, safety enhancements and navigation aids. However, vehicle detection is a challenging computer vision task, especially in complex urban settings. Traditional methods using hand-crafted features like HAAR cascades have limitations. Recent deep learning advances have enabled convolutional neural networks (CNNs) like Faster R-CNN, SSD and YOLO to be applied to vehicle detection with significantly improved accuracy. But each technique has tradeoffs between precision and processing speed. Two-stage detectors like Faster R-CNN are highly accurate but slow at 7 FPS. Single-shot detectors like SSD are faster at 22 FPS but less precise. YOLO is extremely fast at 45 FPS but has lower accuracy. This paper reviews prominent deep learning vehicle detectors. It proposes a new integrated method combining YOLOv3 detection, optical flow tracking and trajectory analysis to enhance both accuracy and speed. Results on highway and urban datasets show improved precision, recall and F1 scores compared to YOLOv3 alone. Optical flow helps filter noise and recover missed detections. Trajectory analysis enables consistent object IDs across frames. Compared to other CNN models, the proposed technique achieves a better balance of real-time performance and accuracy. Occlusion handling and small object detection remain open challenges. In summary, deep learning has enabled major progress but enhancements in model architecture, training data and occlusion handling are needed to realize the full potential for traffic management applications. The integrated method proposed offers improved performance over baseline detectors. We have achieved 99 % accuracy in our project</p> Patakamudi Swathi Dara Sai Tejaswi Mohammad Amanulla Khan Miriyala Saishree Venu Babu Rachapudi Dinesh Kumar Anguraj Copyright (c) 2024 Patakamudi Swathi, Dara Sai Tejaswi, Mohammad Amanulla Khan, Miriyala Saishree, Venu Babu Rachapudi, Dinesh Kumar Anguraj 2024-04-13 2024-04-13 3 295 295 10.56294/dm2024295 A Progressive UNDML Framework Model for Breast Cancer Diagnosis and Classification <p>According to recent research, it is studied that the second most common cause of death for women worldwide is breast cancer. Since it can be incredibly difficult to determine the true cause of breast cancer, early diagnosis is crucial to lowering the disease's fatality rate. Early cancer detection raises the chance of survival by up to 8%. Radiologists look for irregularities in breast images collected from mammograms, X-rays, or MRI scans. Radiologists of all levels struggle to identify features like lumps, masses, and micro-calcifications, which leads to high false-positive and false-negative rates. Recent developments in deep learning and image processing give rise to some optimism for the creation of improved applications for the early diagnosis of breast cancer. A methodological study was carried out in which a new Deep U-Net Segmentation based Convolutional Neural Network, named UNDML framework is developed for identifying and categorizing breast anomalies. This framework involves the operations of preprocessing, quality enhancement, feature extraction, segmentation, and classification. Preprocessing is carried out in this case to enhance the quality of the breast picture input. Consequently, the Deep U-net segmentation methodology is applied to accurately segment the breast image for improving the cancer detection rate. Finally, the CNN mechanism is utilized to categorize the class of breast cancer. To validate the performance of this method, an extensive simulation and comparative analysis have been performed in this work. The obtained results demonstrate that the UNDML mechanism outperforms the other models with increased tumor detection rate and accuracy</p> <p> </p> G. Meenalochini D. Amutha Guka Ramkumar Sivasakthivel Manikandan Rajagopal Copyright (c) 2024 G. Meenalochini, D. Amutha Guka, Ramkumar Sivasakthivel, Manikandan Rajagopal 2024-02-07 2024-02-07 3 198 198 10.56294/dm2024198 Hybrid Feature Selection with Chaotic Rat Swarm Optimization-Based Convolutional Neural Network for Heart Disease Prediction from Imbalanced Datasets <p>Introduction: Early diagnosis of Cardiovascular Disease (CVD) is vital in reducing mortality rates. Artificial intelligence and machine learning algorithms have increased the CVD prediction capability of clinical decision support systems. However, the shallow feature learning in machine learning and incompetent feature selection methods still pose a greater challenge. Consequently, deep learning algorithms are needed to improvise the CVD prediction frameworks. Methods: This paper proposes an advanced CDSS for CVD detection using a hybrid DL method. Initially, the Improved Hierarchical Density-based Spatial Clustering of Applications with Noise (IHDBSCAN), Adaptive Class Median-based Missing Value Imputation (ACMMVI) and Clustering Using Representatives-Adaptive Synthetic Sampling (CURE-ADASYN) approaches are introduced in the pre-processing stage for enhancing the input quality by solving the problems of outliers, missing values and class imbalance, respectively. Then, the features are extracted, and optimal feature subsets are selected using the hybrid model of Information gain with Improved Owl Optimization algorithm (IG-IOOA), where OOA is improved by enhancing the search functions of the local search process. These selected features are fed to the proposed Chaotic Rat Swarm Optimization-based Convolutional Neural Networks (CRSO-CNN) classifier model for detecting heart disease. Results: Four UCI datasets are used to validate the proposed framework, and the results showed that the OOA-DLSO-ELM-based approach provides better heart disease prediction with high accuracy of 97.57%, 97.32%, 96.254% and 97.37% for the four datasets. Conclusions: Therefore, this proposed CRSO-CNN model improves the heart disease classification with reduced time complexity for all four UCI datasets.</p> D Sasirega V Krishapriya Copyright (c) 2024 Sasirega. D, Krishnapriya.V 2024-05-17 2024-05-17 3 262 262 10.56294/dm2024262 E-government and administrative management at the Provincial Municipality of Huaura <p>By using digital technologies to streamline procedures and increase the productivity of public services, e-government modernizes administrative management and makes government more accessible and responsive to citizens' requests for assistance. The purpose of this study was to determine the relationship between e-government and administrative management in the Provincial Municipality of Huaura, Peru. Using a sample of 129 administrative workers and a population of 194 administrative workers, a quantitative, non-experimental, cross-sectional and correlational methodology was developed. Participants completed a survey-questionnaire. The results showed a substantial relationship between administrative management and e-government in the Provincial Municipality of Huaura, with a sig. of less than 5 % and an Rho value of 0.596. This allowed us to deduce that the planning, organization, management and control of the entity's public resources will improve to the extent that a more solid electronic infrastructure is implemented, political will and institutional architecture, governance through transformations and organizational redesign, and whether or not its citizens have the necessary tools or knowledge to access online information and services.</p> Víctor Joselito Linares-Cabrera María Amelia Díaz-Nicho de Linares Abrahán Cesar Neri-Ayala Cesar Armando Díaz-Valladares Pablo Cesar Cadenas-Calderón Gladys Magdalena Aguinaga-Mendoza Copyright (c) 2024 Víctor Joselito Linares-Cabrera, María Amelia Díaz-Nicho de Linares, Abrahán Cesar Neri-Ayala, Cesar Armando Díaz-Valladares, Pablo Cesar Cadenas-Calderón, Gladys Magdalena Aguinaga-Mendoza 2024-05-12 2024-05-12 3 322 322 10.56294/dm2024322 Social Capital in Small Industrial Firms and Its Link with Innovation <p>Introduction: Social Capital in organizations is an intangible asset that represents the favourable relationships that exist between work teams, within an organization and externally, to different interest groups.<br />Objective: This study examined the link between internal relational social capital (RSC) and external RSC with innovation in small industrial firms in Tabasco, Mexico. There was also an inquiry into how much internal RSC and external RSC explain innovation. <br />Methods: The design was nonexperimental, cross-sectional, descriptive, correlational, and explanatory. Linear regression analysis was used.<br />Results: Significant positive relationships was identified between internal RSC and external RSC and innovation. The internal RSC and external RSC contributed significantly to the explaining of innovation. Areas of opportunity were identified for these firms in process design and formal research activities for new raw materials, production procedures and patent generation. Conclusion: To promote innovation, managers of small industrial companies must continue to establish strategies and practices to strengthen RSC.</p> Edith Georgina Surdez Pérez María del Carmen Sandoval Caraveo Maribel Flores Galicia Copyright (c) 2024 Edith Georgina Surdez Pérez, María del Carmen Sandoval Caraveo, Maribel Flores Galicia 2024-03-30 2024-03-30 3 227 227 10.56294/dm2024227 Document processing system with digital signatures and administrative management in public universities. A review of the literature <p>Introduction: the concern about the limited progress in public institutions in Peru in the field of digitization of processes, despite the existence of legislation in force with coordinated actions from the State, to advance the digital development of the country. <br />Objective: analyze the current situation of the system of document processing through digital signatures and administrative management in public universities. <br />Methods: bibliographic research developed through a systematic review of repositories of Peruvian universities dated since 2019 and with the support of Google Scholar. <br />Results: the findings showed that the existing advances continue to be scarce despite having demonstrated the benefits they bring to these entities in the use of human resources, materials, and time costs, as well as in the streamlining of their administrative processes, in line with the global trend of zero paper.<br />Conclusions: un effort should be made to convey the benefits achieved with the application of this system, to overcome the doubts expressed by the respondents and to achieve an adequate implementation of the system</p> Lincoln Fritz Cachay Reyes Jackie Frank Chang Saldaña Julio Cesar Pastor Segura Liz Sobeida Salirrosas Navarro Janet Yvone Castagne Vasquez Copyright (c) 2024 Jackie Frank Chang Saldaña, Lincoln Fritz Cachay Reyes, Julio Cesar Pastor Segura, Liz Sobeida Salirrosas Navarro, Janet Yvone Castagne Vasquez 2024-04-27 2024-04-27 3 292 292 10.56294/dm2024292 Technological assistance in highly competitive sports for referee decision making: A systematic literature review. <p>Introduction: During the last decade, it has become evident that the impact of a referee's decision in professional sports turns out to be a turning point in the outcome of a competition, often generating discomfort among fans and competitors. It is for this reason that technological assistants were implemented in sports to help in referee decision making.<br />Objective: Review and analyze those technological solutions based on the use of artificial intelligence techniques capable of serving as technological assistants in support of referee decision-making in highly competitive professional sports.<br />Method: The PICO methodology was used for the selection process of scientific publications of the PRISMA declaration. Finding 21 scientific publications extracted from the SCOPUS database that comply with the proposed guidelines, which were reviewed and analyzed to obtain information with added value.<br />Results: It was found that the proposed technological assistants reached a level of precision greater than 90% in certain sports. Likewise, those limitations were found that reduce the operational quality of these solutions. As found those algorithms, models, methods and approaches of artificial intelligence most used and recommended for future research studies.<br />Conclusions: In conclusion, the implementation of technological assistants based on artificial intelligence in referee decision making in professional sports has proven to be an effective tool, achieving significant levels of precision.</p> Rafael Thomas-Acaro Brian Meneses-Claudio Copyright (c) 2024 Rafael Thomas-Acaro, Brian Meneses-Claudio 2024-01-10 2024-01-10 3 188 188 10.56294/dm2024188 Validation of a Job Satisfaction Scale among Health Workers <p>Background: Job satisfaction is a key focus in organizational behavior studies, particularly relevant in the healthcare sector and nursing. It influences patient care quality and staff retention and is shaped by the work environment, working conditions, managerial support, and interactions among colleagues. However, there is limited research specifically addressing the job satisfaction of nurses in Peru, a critical area in health administration. Objective: This study aimed to evaluate the metric properties of the S20/23 job satisfaction scale among Peruvian nurses. Methods: An instrumental research design was employed using a non-probabilistic sample of 325 nurses from two hospitals in Lima, Peru. The Chilean version of the S20/23 scale was used, comprising four dimensions of job satisfaction (relationship with supervision, physical work space, professional fulfillment, and training and decision-making opportunities). Data analysis included descriptive statistics, confirmatory factor analysis (CFA), and reliability tests using Cronbach's Alpha and McDonald's Omega. Results: The CFA revealed a satisfactory fit for the four-dimensional structure with 18 items (χ2 = 387.290, df = 124, p &lt; .001, CFI = 0.92, TLI = 0.90, RMSEA = 0.08, SRMR = 0.05). The scale also demonstrated high reliability for each dimension: relationship with supervision (α = 0.90, ꞷ = 0.87), physical work space (α, ꞷ = 0.92), professional fulfillment (α, ꞷ = 0.88), and training and decision-making opportunities (α = 0.88, ꞷ = 0.84), with acceptable factor loadings (&gt;0.70). Conclusions: The adapted 18-item S20/23 scale is a valid and reliable tool for assessing job satisfaction among Peruvian nurses. The study highlights the importance of specific job satisfaction dimensions, such as relationships with supervisors and professional development opportunities, in the Peruvian nursing context.</p> Allison Ramirez-Cruz Caleb Sucapuca Mardel Morales García Víctor D Álvarez-Manrique Alcides Flores-Saenz Wilter C. Morales-García Copyright (c) 2024 Allison Ramirez-Cruz, Caleb Sucapuca, Mardel Morales-García, Víctor D. Álvarez-Manrique, Alcides A Flores-Saenz, Wilter C. Morales-García 2024-02-27 2024-02-27 3 260 260 10.56294/dm2024260 Analysis of academic research data with the use of ATLAS.ti. Experiences of use in the area of Tourism and Hospitality Administration <p>Qualitative data analysis in academic research is a challenge. In this context, the use of tools such as ATLAS.ti has emerged as a potential solution to improve the understanding and management of data in the analysis of in-depth interviews. The main objective of the research was to analyze the perspectives of Tourism and Hospitality Management students on the use of ATLAS.ti in the analysis of interviews in qualitative research. The methodology employs a qualitative approach and a descriptive-interpretative design. Data were collected through in-depth interviews and focus groups directed to 40 students of the X cycle who conducted this approach in their research to opt for the bachelor’s degree in Tourism and Hospitality Administration during the years 2022 and 2023. The findings reveal that the use of ATLAS.ti in qualitative data analysis is highly beneficial, facilitating the coding, organization, and identification of emerging patterns in in-depth interviews. The relevance of its effective use in qualitative analysis is highlighted, improving data management, and understanding of participants' perspectives. It is concluded that it is a valuable and effective tool in this context, although the need for researchers to acquire a deep understanding of the tool and receive adequate training is emphasized. It is suggested that they focus on continuous training in its use and constant practice of its advanced functionalities, especially in areas such as coding and code creation, to achieve a deeper interpretation of qualitative data.</p> Miriam Viviana Ñañez-Silva Julio Cesar Quispe-Calderón Patricia Matilde Huallpa-Quispe Bertha Nancy Larico-Quispe Copyright (c) 2024 Miriam Viviana Ñañez-Silva, Julio Cesar Quispe-Calderón, Patricia Matilde Huallpa-Quispe, Bertha Nancy Larico-Quispe 2024-05-05 2024-05-05 3 306 306 10.56294/dm2024306 LDCML: a novel ai-driven approach for privacy-preserving anonymization of quasi-identifiers <p>Introduction: The exponential growth of data generation has led to an escalating concern for data privacy on a global scale. This work introduces a pioneering approach to address the often overlooked data privacy leakages associated with quasi-identifiers, leveraging artificial intelligence, machine learning and data correlation analysis as foundational tools. Traditional data privacy measures predominantly focus on anonymizing sensitive attributes and exact identifiers, leaving quasi-identifiers in their raw form, potentially exposing privacy vulnerabilities.<br />Objective: The primary objective of the presented work, is to anonymise the quasi-identifiers to enhance the overall data privacy preservation with minimal data utility degradation.<br />Methods: In this study, the authors propose the integration of ℓ-diversity data privacy algorithms with the OPTICS clustering technique and data correlation analysis to anonymize the quasi-identifiers.<br />Results: To assess its efficacy, the proposed approach is rigorously compared against benchmark algorithms. The datasets used are - Adult dataset and Heart Disease Dataset from the UCI machine learning repository. The comparative metrics are - Relative Distance, Information Loss, KL Divergence and Execution Time.<br />Conclusion: The comparative performance evaluation of the proposed methodology demonstrates its superiority over established benchmark techniques, positioning it as a promising solution for the requisite data privacy-preserving model. Moreover, this analysis underscores the imperative of integrating artificial intelligence (AI) methodologies into data privacy paradigms, emphasizing the necessity of such approaches in contemporary research and application domains.</p> Sreemoyee Biswas Vrashti Nagar Nilay Khare Priyank Jain Pragati Agrawal Copyright (c) 2024 Sreemoyee Biswas, Vrashti Nagar, Nilay Khare, Priyank Jain, Pragati Agrawal 2024-05-17 2024-05-17 3 287 287 10.56294/dm2024287 Applicable methodologies for business continuity management in IT services: A systematic literature review <p>Introduction: Currently, information technologies have one characteristic in common: their volatility. This is why it is important that companies have methodologies that allow adequate management of the continuity of the services offered through them.<br />Objective: In this sense, the purpose of this systematic literature review is to identify the most appropriate methodologies that can be implemented in companies to deal with these unforeseen interruptions.<br />Method: With a study based on a PICO question, the search for relevant literature in a scientific database was proposed using a search equation based on keywords.<br />Results: The studies offer qualitative results that mainly allow reducing response times before incidents of unforeseen interruptions, among the most notable is that the proposed systems help increase the success rate of recovery procedures by 80%, allow identifying and apply integration technologies that allow improving business continuity systems, among others. However, there is a knowledge gap for which the implementation of these methods is suggested for future proposals in order to achieve quantitative results that can be presented through metrics.<br />Conclusions: In conclusion, the present systematic literature review carried out the analysis and a comparison of the methodologies proposed by the authors and analyzes the results achieved in each of them, suggesting that 69% of the articles mention an origin of the associated interruptions to logical failures, 75% of the studies indicate that business continuity plans mostly have a preventive focus and 44% suggest continuous testing of plans to ensure their effectiveness.</p> Renzo Huapaya-Ruiz Brian Meneses-Claudio Copyright (c) 2024 Renzo Huapaya-Ruiz, Brian Meneses-Claudio 2024-01-08 2024-01-08 3 182 182 10.56294/dm2024182 Validation of an Organizational Climate Scale in health workers <p>Introduction: Organizational climate is a key factor in employee performance and satisfaction. In this study, the validity and reliability of an organizational climate scale in agroindustrial companies in Peru was examined. Objective: To analyze the psychometric properties of an organizational climate scale adapted to Peruvian Spanish. Methods: A methodological study was carried out. Demographic data were collected, as well as responses to an organizational climate questionnaire. Results: The data were analyzed using confirmatory factorial analysis (CFA). The reliability of the instrument was high (α = 0.92). However, the factor loadings of several items were not adequate, so a unidimensional model was tested, then a model with adequate factor loadings, and finally an optimal model. In this last 9-item model, the fit was optimal, and the factor loading was adequate for all items. Conclusion: Overall, the organizational climate scale demonstrated good reliability and validity in this context of agroindustrial companies in Peru. However, some items needed to be revised to improve the scale's accuracy. These findings provide a valuable tool for measuring the organizational climate in these types of companies and pave the way for future research in this field.</p> Flor Damiano-Aulla Jeydi Raqui-Rojas Víctor D. Álvarez-Manrique Liset Z. Sairitupa-Sanchez Wilter C. Morales-García Copyright (c) 2024 Flor Damiano-Aulla, Jeydi Raqui-Rojas, Víctor D. Álvarez-Manrique, Liset Z. Sairitupa-Sanchez, Wilter C. Morales-García 2024-03-13 2024-03-13 3 257 257 10.56294/dm2024257 How Digital Competence Reduces Technostress <p>This research examined the link between digital competencies and technostress among university instructors in remote settings in Peru, with the goal of identifying if improving digital skills could help mitigate technostress. A non-experimental, quantitative methodology was employed, gathering data via standardized surveys such as the DigCompEdu Check-In and RED TIC. The participant group comprised 120 teachers, whose responses were analyzed using logistic regression in SPSS v27. Descriptive findings indicated that 55.6% of the teachers demonstrated a high level of professional commitment, and 58.9% showed proficient digital pedagogical skills. Inferential analysis showed a significant correlation between digital competencies and technostress, with a Nagelkerke index of 0.622, suggesting that about 62.2% of the variation in technostress could be explained by differences in digital competencies. The study concludes that enhancing digital competencies among teachers could substantially reduce their technostress, emphasizing the need to effectively integrate these skills into teaching practices to improve the educational experience in virtual settings.</p> Karina Raquel Bartra-Rivero Lida Vásquez-Pajuelo Geraldine Amelia Avila-Sánchez Elba María Andrade-Díaz Gliria Susana Méndez-Ilizarbe Jhonny Richard Rodriguez-Barboza Yvonne Jacqueline Alarcón-Villalobos Copyright (c) 2024 Karina Raquel Bartra-Rivero, Lida Vásquez-Pajuelo, Geraldine Amelia Avila-Sánchez, Elba María Andrade-Díaz, Gliria Susana Méndez-Ilizarbe, Jhonny Richard Rodriguez-Barboza , Yvonne Jacqueline Alarcón-Villalobos 2024-04-30 2024-04-30 3 303 303 10.56294/dm2024303 Bibliometric Mapping of Trends of Project-Based Learning with Augmented Reality on Communication Ability of Children with Special Needs (Autism) <p>This study aims to analyze the use of project-based learning with augmented reality (AR) on the communication skills of autistic children through systematic literature review and theoretical bibliometric analysis of research on autistic children's communication skills sourced from Scopus from 2013 to 2022. The research method is a systematic literature review with analysis theory and bibliometric analysis with VOSviewer and RStudio applications. This research was conducted in several stages, namely determining i) research questions; ii) inclusion and exclusion criteria; iii) quality assessment; iv) data collection; and v) bibliometric analysis. The results of this study note that research on the communication skills of autistic children is still a research trend that is of great interest to researchers with an increase in research occurring from 2015 to 2022. Countries from the Americas and Asia have contributed the most to research on the communication skills of autistic children. The subject areas of psychology and social science are the subject areas with the most contributions, namely 22% each of the 165 articles found. There is a relationship between the term project (P), communication skills (CS), and autism spectrum disorder (ASD). This relationship is shown by the link strength P→CS is 2 and the link strength CS→ASD is 4. The characteristic requirements for autistic children for project-based learning with AR are middle class autistic children. The characteristics possessed by project-based learning can help in training the level of communication skills of autistic children and it would be better if assisted with the use of AR.</p> Dwi Fitria Al Husaeni M. Munir R. Rasim Laksmi Dewi Azizah Nurul Khoirunnisa Copyright (c) 2024 Dwi Fitria Al Husaeni, M. Munir, R. Rasim, Laksmi Dewi, Azizah Nurul Khoirunnisa 2024-04-30 2024-04-30 3 261 261 10.56294/dm2024261 Overview on Data Ingestion and Schema Matching <p>This overview traced the evolution of data management, transitioning from traditional ETL processes to addressing contemporary challenges in Big Data, with a particular emphasis on data ingestion and schema matching. It explored the classification of data ingestion into batch, real-time, and hybrid processing, underscoring the challenges associated with data quality and heterogeneity. Central to the discussion was the role of schema mapping in data alignment, proving indispensable for linking diverse data sources. Recent advancements, notably the adoption of machine learning techniques, were significantly reshaping the landscape. The paper also addressed current challenges, including the integration of new technologies and the necessity for effective schema matching solutions, highlighting the continuously evolving nature of schema matching in the context of Big Data.</p> Oumaima El Haddadi Max Chevalier Bernard Dousset Ahmad El Allaoui Anass El Haddadi Olivier Teste Copyright (c) 2024 Oumaima El Haddadi, Max Chevalier, Bernard Dousset, Ahmad El Allaoui, Anass El Haddadi, Olivier Teste 2024-02-08 2024-02-08 3 219 219 10.56294/dm2024219